A comparison theorem for functional differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random fractional functional differential equations

In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Massera Type Theorem for Abstract Functional Differential Equations

The paper is concerned with conditions for the existence of almost periodic solutions of the following abstract functional differential equation u̇(t) = Au(t)+[Bu](t)+f(t), where A is a closed operator in a Banach space X, B is a general bounded linear operator in the function space of all X-valued bounded and uniformly continuous functions that satisfies a so-called autonomous condition. The ob...

متن کامل

On impulsive fuzzy functional differential equations

In this paper, we prove the existence and uniqueness of solution to the impulsive fuzzy functional differential equations under generalized Hukuhara differentiability via the principle of contraction mappings. Some examples are provided to illustrate the result.

متن کامل

A Quantitative Comparison Theorem for Nonlinear Equations

In the present paper we establish a quantitative comparison theorem for positive solutions of the following initial value problems 8 < : (p 1 (r)(u)ju 0 j m?2 u 0) 0 + q 1 (r)f(u) = 0 u(0) = u 0 ; u 0 (0) = 0 and 8 < : (p 2 (r)(v)jv 0 j m?2 v 0) 0 + q 2 (r)f(v) = 0 v(0) = v 0 ; v 0 (0) = 0 with r > 0 and m > 1, and also show some applications of the theorem to the non-existence problem of posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1976

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700025223